

CURRENT STATE OF PROGRAMMING IN
HIGH SCHOOLS AND UNIVERSITIES -
HORIZONTAL ANALYSIS IN CROATIA

Lidija Kozina

Davor Fodrek

Zlatko Stapić

Ivanec, July 2024

1

Authors Lidija Kozina, High School Ivanec

 Davor Fodrek, High School Ivanec

 Zlatko Stapić, Faculty of Organization and Informatics Varaždin

Project Object Oriented Programming for Fun

Project acronym OOP4FUN

Agreement number 2021-1-SK01-KA220-SCH-00027903

Project coordinator Žilinska univerzita v Žiline (Slovakia)

Project partners Sveučilište u Zagrebu (Croatia)

 Srednja škola Ivanec (Croatia)

 Univerzita Pardubice (Czech Republic)

 Gymnazium Pardubice (Czech Republic)

 Obchodna akademia Povazska Bystrica (Slovakia)

 Hochschule fuer Technik und Wirtschaft Dresden (Germany)

 Gymnasium Dresden-Plauen (Germany)

 Univerzitet u Beogradu (Serbia)

 Gimnazija Ivanjica (Serbia)

Year of publication July, 2024

2

Table of contents

1. Horizontal analysis of universities’ data .. 5

1.1. Analysis of OOP load ... 5

1.2. Analysis of prior requirements of universities’ OOP related courses 13

1.2.1. OOP teaching courses .. 14

1.2.2. OOP practicing courses .. 15

1.2.3. OOP using courses ... 18

1.3. Analysis of approaches for teaching OOP ... 20

1.3.1. Remarks on gathered data .. 20

1.3.2. Identified themes .. 20

1.3.2.1. Forms of instruction / forms of knowledge transfer ... 20

1.3.2.2. Individual work .. 21

1.3.2.3. Assessment .. 22

1.3.2.4. Tools .. 23

1.3.3. Conclusion ... 25

2. Horizontal analysis of high schools’ data .. 26

2.1. Analysis of OOP load ... 27

2.2. Analysis of teaching methods, types of activities, assessments and team work experience 30

2.2.1. Teaching methods ... 30

2.2.2. Types of activities .. 32

2.2.3. Assessments .. 33

2.2.4. Teamwork experience ... 34

2.3. Analysis of literature and teaching materials .. 35

2.4. Analysis of suggestions on how to improve OOP teaching in schools 35

2.5. Additional comments .. 36

2.6. Review of additional subjects related to programming in general 36

3

List of tables

Table 1 - University courses categorization .. 7

Table 2 - Total OOP teaching/related/unrelated hours per mandatory and optinal subjects of 1st year

of study on FOI .. 9

Table 3 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 1st year of study on FOI .. 9

Table 4 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 2nd

year of study on FOI .. 10

Table 5 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 2nd year of study on FOI ... 10

Table 6 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 3rd year

of study on FOI .. 11

Table 7 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 3rd year of study on FOI .. 11

Table 8 - OOP teaching courses considered in the prior requirements analysis 14

Table 9 - Prior requirements analysis of course Object-oriented programming on FOI 15

Table 10 - OOP practicing courses considered in the prior requirements analysis 15

Table 11 - Prior requirements analysis of course Windows Applications Development on FOI 16

Table 12 - Prior requirements analysis of course Programming 2on FOI ... 17

Table 13 - Prior requirements analysis of course Mobile applications and games development on FOI

 ... 18

Table 14 - OOP using courses considered in the prior requirements analysis 19

Table 15 - Prior requirements analysis of course Programming in Python on FOI 19

Table 16 - Suggested or mandated IDEs per programming language ... 24

Table 17 - Basic data of OOP related subjects .. 28

Table 18 - Literature and other materials used in OOP subjects .. 35

Table 19 - Problems that teachers are facing with and suggestions for improvement the quality of

classes .. 36

Table 20 - Other IT subjects taught in partner institutions ... 36

4

List of charts

Chart 1 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 1st year of study on FOI .. 9

Chart 2 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 2nd year of study on FOI .. 10

Chart 3 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 3rd year of study on FOI ... 11

Chart 4 - Total OOP teaching/related/unrelated hours distribution between 3 years of study on FOI

 ... 12

Chart 5 - Total OOP teaching/practicing/using hours distribution between 3 years of study on FOI of

courses teaching OOP ... 12

Chart 6 - Forms of knowledge transfer used in lectures ... 20

Chart 7 - Learning-by-doing approach in laboratory exercises ... 21

Chart 8 - Frequency of assessment methods for theoretical knowledge .. 22

Chart 9 - Type of knowledge assessed in analyzed courses .. 23

Chart 10 - Programming language occurence in analyzed courses ... 23

Chart 11 - Most frequently used IDEs in analyzed courses ... 25

Chart 12 - High schools and numbers of OOP related subjects ... 27

Chart 13 - Categorization of subjects and their number per category ... 29

Chart 14 - Distribution of hours per subject dedicated to OOP contents .. 29

Chart 15 - Representation of teaching methods used in high school subjects 31

Chart 16 - The presence of students' teamwork in high school OOP subjects 34

5

1. Horizontal analysis of universities’ data

To analyze gap in teaching of (object oriented) programming between high schools and universities

firstly we have done analysis of the way of teaching of programming on universities. All partners

identified relevant subjects related to teaching OOP in the bachelor studies and we performed

horizontal analysis of these data. The methodology used to collect and analyze data was as follows:

1. Partners from universities identified subjects related to teaching of OOP. For every subject we

collected these data (collected data are enclosed in attachment):

a. Type of subject (mandatory/optional).

b. Year of study.

c. Total hours.

d. Hours of teaching OOP.

e. Hours of teaching topics related to OOP.

f. Prior knowledge required to attend the subject.

g. Prior skills required to attend the subject.

h. Learning outcomes.

i. Topics.

j. Description of teaching methods.

k. Type of activities (investigation, discussion, practical work, production, data

acquisition, etc.).

l. Use of technology.

2. Review of the data was performed. Partners from universities reviewed and discussed data

entered from other partners in order to resolve inequalities.

3. The analysis of data was performed. We divided it into four areas:

a. Analysis of OOP load. We focused on the year of study and hour dotation of every

subject and categorized the subjects. Relevant subjects were filtered out for the other

stages of analysis.

b. Analysis of prior knowledge and prior skills. We compared these prerequisites to the

current teaching practice of OOP.

c. Analysis of learning outcomes. We identified outcomes and competencies that could

be moved to high schools’ syllabus.

d. Analysis of methodologies used to teach OOP in universities.

We will focus on data collected in Croatia, from a Faculty of organization and informatics, Varaždin and

High School, Ivanec.

1.1. Analysis of OOP load

The very first analysis of collected data was focused on identification of relevant subjects for latter

parts of this analysis. Every partner was obliged to analyze relevant courses. This populated set 𝑆 of

subjects taken into consideration. In this part we focused on following data for every subject 𝜎 ∈ 𝑆:

a. Type of subject (mandatory/optional): T𝜎 ∈ {𝑀, 𝑂}

b. Year of study: y𝜎 ∈ {1,2,3}

6

c. Total hours: 𝑇𝐻𝜎
.

d. Total hours of teaching OOP: 𝑇𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

e. Total hours of teaching topics related to OOP: 𝑇𝐻𝜎
𝑟𝑒𝑙𝑎𝑡𝑒𝑑

In order to perform the analysis we computed:

f. Relative hours of teaching OOP: 𝑅𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

=
𝑇𝐻𝜎

𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

𝑇𝐻𝜎
.

g. Relative hours of teaching topics related to OOP: 𝑅𝐻𝜎
𝑟𝑒𝑙𝑎𝑡𝑒𝑑 =

𝑇𝐻𝜎
𝑟𝑒𝑙𝑎𝑡𝑒𝑑

𝑇𝐻𝜎
.

h. Total hors of teaching topics unrelated to OOP:

𝑇𝐻𝜎
𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑 = 𝑇𝐻𝜎

. − 𝑇𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

− 𝑇𝐻𝜎
𝑟𝑒𝑙𝑎𝑡𝑒𝑑

i. Relative hours of teaching topics unrelated to OOP: 𝑅𝐻𝜎
𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑 =

𝑇𝐻𝜎
𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑

𝑇𝐻𝜎
.

To identify relevant courses we proposed three categories:

1. OOP teaching course: Courses in this category are primarily focused on teaching new

concepts. These courses are oriented both on theoretical knowledge as well as on practical

skills in using of these concepts. The criterion for the course to fall into this category is to teach

topics directly related to the OOP at least in half of the hours:

𝑐𝑟𝑖𝑡𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

= 𝑅𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

≥ 0.5.

2. OOP practicing course: Courses in this category are primarily focused on practical

understanding of OOP concepts. These courses are not focused on teaching theoretical

background – typically they rely on knowledge previously learned in courses from OOP

teaching category and teach brand new concepts in smaller number of hours. The focus is

placed on understanding of practical usage of the OOP in different scenarios. The criterion for

the course to fall into this category is not to be an OOP teaching course and to teach topics

related to the OOP at least in third of the hours:

𝑐𝑟𝑖𝑡𝜎
𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑖𝑛𝑔

= ¬𝑐𝑟𝑖𝑡𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

∧ 𝑅𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

+ 𝑅𝐻𝜎
𝑟𝑒𝑙𝑎𝑡𝑒𝑑 ≥ 0.3.

3. OOP using course: Courses in this category are not focused on teaching OOP however are

strongly dependent on understanding of OOP. These are typically courses focused on some

technology/programming language. If new OOP concepts are discussed, these are typically

strongly specific for used technology/programming language and may not be applicable in

other technologies/programming languages. The criterion for the course to fit in this category

is not to fit in any of previous two categories:

𝑐𝑟𝑖𝑡𝜎
𝑢𝑠𝑖𝑛𝑔

= ¬𝑐𝑟𝑖𝑡𝜎
𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑖𝑛𝑔

.

Note that fitting any course into forementioned categories does not mean, that the course itself its

curriculum does not belong or is in opposition to the other two categories. We point out that any OOP

teaching course can fit OOP practicing (without proper practice it is not possible to cover new topics)

as well as OOP using (one has to use specific language with its specifics to learn it) category, however

this does not work vice versa (OOP using course is not OOP teaching). In the following picture we define

the hierarchy of the categories based on the areas that must be covered in respective lectures.

Categorization of all courses is presented in Table 1.

7

Table 1 - University courses categorization

University Subject name
Type of
subject

Year

Hours

Category
Total

Teaching OOP Related to OOP

Total Relative Total Relative

FOI Object-oriented programming Mandatory 1 60 60 100% 0 0% OOP Teaching

FOI Windows Applications Development Optional 2 60 10 17% 24 40% OOP Practising

FOI Programming in Python Optional 3 30 6 20% 2 7% OOP Using

FOI Programming 2 Mandatory 1 60 20 33% 10 17% OOP Practising

FOI Mobile applications and games development Mandatory 3 60 0 0% 43 72% OOP Practising

8

Despite the necessity of courses from category OOP using on universities, we decided to filter them

out and do the analysis taking into consideration only OOP teaching and OOP practicing courses, since

these are focused on teaching the OOP concepts.

In order to identify the load of OOP in respective years, firstly the separate analysis of respective

universities’ courses was performed. If the load of the OOP will be high in the first years, that will

support the assumption that universities invest a big amount of teaching hours to teach OOP from the

beginning of studies. In the following charts and tables, we show data processed of every university as

follows:

1. For every year of study, we present:

a. Tables showing both total (TH) and related (RH) hours of teaching OOP, related to OOP

and non related to OOP for both course types (mandatory and optional). These tables

provide a data for following chart.

b. Charts of RH of teaching OOP, related to OOP and non related to OOP. One can see the

distribution of hours between subjects focused on OOP. One can see that hierarchy of

courses is copied – in the first year of studies, the courses from the bottom of the hierarchy

are present, latter the top courses are present.

c. Tables showing both total (TH) and related (RH) hours of teaching OOP, related to OOP

and non related to OOP for defined course categories (OOP teaching, OOP practicing and

OOP using).

2. In the overall analysis of all years of study, we present:

a. Chart of TH (teaching, related and unrelated) in every year of study (see sum row of

respective tables as described in 1a). One can see total number of hours devoted to

subjects focused on OOP. This justify the assumption about the focus of universities on

OOP in first years of study.

b. Chart of 𝑇𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

 in every year of study distributed among course categories (see OOP

teaching row of respective tables as described in 1c). One can observe the focus of OOP

teaching subjects in different years of study. Note the significant number of OOP teaching

courses in the first year of study.

9

The informatics related study program at FOI places courses that are relevant to OOP in all three years

of study. Tables Table 2 and Table 3 summarize 1st year of study, Table 4 and

Table 5 summarize 2nd year of study Table 6 and Table 7 summarize 3rd year of study. Visualization of

relative distributions of hours in respective years of study are presented in Chart 11, Chart 22 and Chart

33. Overall analysis of relevant FOI courses is presented in charts Chart 44 and Chart 55.

1st year of study

Table 2 - Total OOP teaching/related/unrelated hours per mandatory and optinal subjects of 1st year of study on FOI

 Hours per year
 1

Course
type

Σ Course total

Teaching OOP Related to OOP
Unrelated to

OOP

Σ % Σ % Σ %

Mandatory 120 80 66,66667 10 8,333333 30 25

Optional 0 0 0 0 0 0 0

Σ 120 80 10 30

Chart 1 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 1st
year of study on FOI

Table 3 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 1st year of study
on FOI

 Course
category

Σ Course
total

Teaching OOP Related to OOP Unrelated to OOP
 Σ % Σ % Σ %

OOP
Teaching OOP Teaching 60 60 100 0 0 0 0
OOP
Practising

OOP
Practising 60 20 33,33333 10 16,66667 30 50

OOP Using OOP Using 0 0 0 0 0 0 0
 Σ 120 80 10 30

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 1st year courses

Teaching OOP Related to OOP Unrelated to OOP

10

2nd year of study

Table 4 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 2nd year of study on FOI

 Hours per year

 2

Course type

Σ Course total
Teaching OOP

Related to
OOP

Unrelated to OOP

 Σ % Σ % Σ %

Mandatory 0 0 0 0 0 0 0

Optional 60 10 16,66667 24 40 26 43,33333

Σ 60 10 24 26

Chart 2 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 2nd
year of study on FOI

Table 5 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 2nd year of study
on FOI

Hours per year

2

Course
category

Σ Course total
Teaching OOP

Related to
OOP

Unrelated to OOP

Σ % Σ % Σ %

OOP
Teaching 0 0 0 0 0 0 0

OOP
Practising 60 10 16,66667 24 40 26 43,33333

OOP Using 0 0 0 0 0 0 0

Σ 60 10 24 26

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 2nd year
courses

Teaching OOP Related to OOP Unrelated to OOP

11

3rd year of study

Table 6 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 3rd year of study on FOI

 Hours per year

 3

Course type Σ Course total

Teaching
OOP

Related to OOP Unrelated to OOP

Σ % Σ % Σ %

Mandatory 60 0 0 43 71,66667 17 28,33333

Optional 30 6 20 2 6,666667 22 73,33333

Σ 90 6 45 39

Chart 3 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 3rd
year of study on FOI

Table 7 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 3rd year of study
on FOI

Hours per year

3

Course
category

Σ Course total

Teaching
OOP

Related to OOP Unrelated to OOP

Σ % Σ % Σ %

OOP
Teaching 0 0 0 0 0 0 0

OOP
Practising 60 0 0 43 71,66667 17 28,33333

OOP Using 30 6 20 2 6,666667 22 73,33333

Σ 90 6 45 39

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 3nd year
courses

Teaching OOP Related to OOP Unrelated to OOP

12

Overall

Chart 4 - Total OOP teaching/related/unrelated hours distribution between 3 years of study on FOI

Chart 5 - Total OOP teaching/practicing/using hours distribution between 3 years of study on FOI of courses teaching OOP

0

20

40

60

80

100

120

140

1 2 3

To
ta

l h
o

u
rs

Year of study

Total hours distribution of OOP courses in years

Unrelated to OOP

Related to OOP

Teaching OOP

0

10

20

30

40

50

60

70

80

90

1 2 3

To
ta

l h
o

u
rs

Year of study

Total OOP teaching hours distribution in course categories

OOP Using

OOP Practising

OOP Teaching

13

1.2. Analysis of prior requirements of universities’ OOP related courses

The gap between universities and high schools could lie in the different expectations of skills and

knowledge of the universities and the real skills and knowledge of absolvents of high schools. In order

to investigate this question, we performed analysis of prior skills and prior knowledge. The

methodology was as follows:

1. We divided courses to OOP teaching, OOP practicing and OOP using.

2. From every subject we identified areas of prior requirements based on prior knowledge and

prior skills provided by partners.

3. To identify overlaps between partners we created matrices of areas of prior requirements of

subjects.

4. Based on experience and related work we interpreted data and formulated conclusion related

to our project.

The areas of prior requirements were identified as follows.

• None (there is no specific prior knowledge or skill requested).

• Code comprehension (student has ability to understand code written in a programming

language).

• Algorithmization (student can write an algorithm based on description of some process).

• Structural programming (student can write structured code using basic control structures).

• Object programming (student can write code following basic principles of OOP – objects,

composition, association). This requirement is listed as well, since some courses from the

analysis build upon knowledge of other courses, where such topic is covered. For the sake of

consistency, we present the analysis of all university courses, however we will exclude such

courses in conclusion.

• Sophisticated programming (student can write sophisticated code using proper paradigm in

order to solve non-trivial problems).

• Data structures (student understands the philosophy and usage of fundamental data

structures).

• Mathematics HS (student can solve math problems of the high school level).

• Mathematics UNI (student can solve math problems of the university level).

• Programming language (student can write algorithms in specified programming language).

• UML (student can create various UML diagrams with proper usage in particular situation).

• Software architecture (student is capable to create proper design of software following

principles of selected architecture).

• Computer networks (student understands the principles of computer networks).

• Use of IDE (student knows how to use IDE and respective tools such as compiler, debugger,

code editor).

• Use of PC (student knows how to install application, browse web, (un)pack files, work with

office applications).

Areas of prior requirements for every subject are listed in separate tables with structure presented

below. Tables include also relevant data (collected data are enclosed in attachment) without further

content modifications, so the identification of respective areas is clear. For better orientation we

highlighted relevant row. Every table contains:

• Subject name.

14

• Type of subject (mandatory/optional).

• Year of study.

• Prior knowledge required to attend the subject.

• Learning outcomes of related course - if analyzed course requests knowledge of some other

subject, we put the learning outcome of that other subject. If there is no prerequisite, this row

is not included in the table.

• Prior skills required to attend the subject.

• Areas of prior requirements – List of requirements of analyzed subject. These are derived from

required prior knowledge, from learning outcomes of related course and from required prior

skills.

1.2.1. OOP teaching courses

Following table summarizes OOP teaching courses as defined in the OOP load analysis on FOI.

Table 8 - OOP teaching courses considered in the prior requirements analysis

University Subject name
Type of
subject

Year

FOI Object-oriented programming Mandatory 1

On FOI, there is one mandatory OOP teaching course in the first year of study analyzed.

15

Table 9 - Prior requirements analysis of course Object-oriented programming on FOI

Subject name Object-oriented programming

Type of subject Mandatory

Year 1

Prior knowledge Algorithmic problem-solving, basics of structural programming, simple and

complex data structures, control structures (sequence, selection, iteration,

jump statements), functions and procedures.

Prior skills The course requires basic skills in writing and understanding procedural code

and the use of integrated development environments.

Areas of prior

requirements

Algorithmization

Structural programming

Data structures

Code comprehension

Use of IDE

1.2.2. OOP practicing courses

Following table summarizes OOP practicing courses as defined in the OOP load analysis on FOI.

Table 10 - OOP practicing courses considered in the prior requirements analysis

University Subject name
Type of
subject

Year

FOI Windows Applications Development Optional 2

FOI Programming 2 Mandatory 1

FOI Mobile applications and games development Mandatory 3

On FOI, there are three OOP practicing courses analyzed: Mandatory in first year of study, optional in

second year of study and mandatory in third year of study.

16

Table 11 - Prior requirements analysis of course Windows Applications Development on FOI

Subject name Windows Applications Development

Type of subject Optional

Year 2

Prior knowledge The prerequisites include the successful completion of Object-oriented

programming course.

Learning outcome

of Object-oriented

programming

After the course student is able to:

- Design an efficient software solution for a given algorithmic problem

- Create models of the software solution using standard UML diagrams

- Organize date in an efficient way for a given algorithmic problem.

- Create models of data structures using standard UML diagrams

- Develop a software solution for a given algorithmic problem using object-

oriented programming language.

Prior skills The course requires basic skills in writing and understanding procedural and

object-oriented code and the use of integrated development environments.

Areas of prior

requirements

Algorithmization

Object programming

UML

Code comprehension

Use of IDE

17

Table 12 - Prior requirements analysis of course Programming 2on FOI

Subject name Programming 2

Type of subject Mandatory

Year 1

Prior knowledge Algorithmic problem-solving, basics of structural programming, simple and

complex data structures, control structures (sequence, selection, iteration,

jump statements), functions and procedures.

Prior skills The course requires basic skills in writing and understanding procedural code

and the use of integrated development environments.

Areas of prior

requirements

Algorithmization

Structural programming

Data structures

Use of IDE

18

Table 13 - Prior requirements analysis of course Mobile applications and games development on FOI

Subject name Mobile applications and games development

Type of subject Mandatory

Year 3

Prior knowledge The prerequisites include the successful completion of Object-oriented

programming course and Mathematics 1 course.

Learning outcome

of Object-oriented

programming

After the course student is able to:

- Design an efficient software solution for a given algorithmic problem

- Create models of the software solution using standard UML diagrams

- Organize date in an efficient way for a given algorithmic problem.

- Create models of data structures using standard UML diagrams

- Develop a software solution for a given algorithmic problem using object-

oriented programming language.

Prior skills No prior skills are defined in course curriculum. However, one can conclude

that the course requires basic skills in writing and understanding procedural

code and the use of integrated development environments as these topics are

not tought but are the base for the other topics included.

Areas of prior

requirements

Algorithmization

Structural programming

Data structures

Mathematics UNI

Code comprehension

Use of IDE

1.2.3. OOP using courses

Following table summarizes OOP using courses as defined int the OOP load analysis.

19

Table 14 - OOP using courses considered in the prior requirements analysis

University Subject name
Type of
subject

Year

FOI Programming in Python Optional 3

On FOI, there is one optional OOP using course in the third year of study analyzed.

Table 15 - Prior requirements analysis of course Programming in Python on FOI

Subject name Programming in Python

Type of subject Optional

Year 3

Prior knowledge The prerequisites include the successful completion of Object-oriented

programming course.

Learning outcome

of Object-oriented

programming

After the course student is able to:

- Design an efficient software solution for a given algorithmic problem

- Create models of the software solution using standard UML diagrams

- Organize date in an efficient way for a given algorithmic problem.

- Create models of data structures using standard UML diagrams

- Develop a software solution for a given algorithmic problem using object-

oriented programming language.

Prior skills The course requires basic skills in writing and understanding procedural and

object-oriented code and the use of integrated development environments.

Areas of prior

requirements

Algorithmization

Object programming

UML

Code comprehension

Use of IDE

20

1.3. Analysis of approaches for teaching OOP

1.3.1. Remarks on gathered data

In order to investigate practices in universities with regard to teaching object-oriented programming

(OOP), we gathered data from relevant courses taught at project partner institutions. These high

education institutions come from 5 countries which differ in terms of high education strategy and

tradition. Also, some partner institutions are from technical fields, while others have strong social and

business component. Finally, the courses themselves differ with regard to academic year they are

taught, the content, and the teachers involved. This allowed us to gather sufficiently diverse data to

identify wide range of practices, tools and methods used for teaching OOP.

1.3.2. Identified themes

1.3.2.1. Forms of instruction / forms of knowledge transfer

Lectures

With regard to forms of instruction all of the 21 analyzed courses favor lectures as a primary means to

transfer theoretical knowledge to students. In order to do that, teachers stick with tradition and start

by explaining underlying theoretical concepts (in 100% of analyzed courses). However, in 57% of

courses teachers provide code examples and use scenarios to motivate students and put course

content into real-life context. In majority of courses there is an emphasis on a two-way communication

between lecturer and students, and between students themselves. Students are regularly encouraged

to ask questions and provide feedback (81% of courses), and in some way to even get involved into

discussions (14% of courses). In one of the courses interactivity and using practical examples is

particularly emphasized by teacher writing programming code and students discuss it in real-time.

Chart 6 - Forms of knowledge transfer used in lectures

1
0

0
%

8
1

%

1
4

%

5
7

%

5
%

F R E Q U E N C Y

LECTURE METHODS

Explanation Q&A

Discussion Motivational/code examples

Real-time demonstration

21

Seminars/Laboratory exercises

Transferring practical knowledge is seen as an essential activity in all the analyzed courses. Laboratory

exercises involving students working on a computer were recognized as the most suitable form of

instruction for doing that. Although learning-by-doing is the core approach in laboratory exercises of

all courses, this was conducted in two distinct ways: (1) “Teacher-first” - teacher goes through an

illustrative example together with students, and then students work on their own with occasional help

and guide from the teacher (67% of courses), (2) “Student-first” students immediately start working

on their own, but teacher provides intensive assistance (33% of courses). Students’ activities and

efforts in laboratory exercises are in some courses a prerequisite for taking exam, while in others are

graded and are constituent part of course evaluation.

Chart 7 - Learning-by-doing approach in laboratory exercises

1.3.2.2. Individual work

Practical assignments

In 33% of analyzed courses no home practical assignments were given to students during the semester.

In such cases, courses rely solely on laboratory exercises to transfer practical knowledge, and

traditional exams to evaluate it. However, most courses (67% of courses) require students to do some

practical work at home. Such practical assignments expect students to gain and demonstrate general

skills such as problem analysis and problem solving, as well as specific skills related to application of

OOP principles and particular technology. The courses, however, differ in terms of when these

assignments are done, as well as the size and the number of assignments. In 2 out of 14 courses with

home assignments student start working on assignments during laboratory exercises (with teachers

providing continuous feedback) and finish them at home. In the rest of courses (12 out of 14) practical

assignments are entirely done at home, and only submitted for evaluation at specific points during the

semester or at the end of the semester.

The size and the number of practical assignments in analyzed courses are correlated and depend on

the overall course load. In some courses students are required to submit one larger-scale practical

assignment (e.g. semestral project) which encompasses all relevant topics taught at the course. Other

courses prescribe several smaller-scale practical assignments, with each assignment targeting

particular topic (e.g. weekly topic), or a phase in software development process (e.g. problem analysis

phase, design, implementation, documentation…). In some cases, these smaller-scale assignments are

67%

33%

Teacher-first

Student-first

22

linked to each other. For example, assignment covering design phase acts as an input model for an

assignment covering implementation phase.

Most courses (11 out of 14) see practical assignments as an individual, one-student activity, while only

3 courses either allow or even mandate working in teams in a traditional or agile manner. In addition

to teacher’s feedback and evaluation, students are often required to present their solutions in front of

classmates and also receive their feedback as well.

1.3.2.3. Assessment

Most analyzed courses (15 out of 21) assess theoretical knowledge of students either by only written

exam (4 courses), only oral exam (3 courses) or both written and oral exam (8 courses). Other courses

rely solely on practical assignments to demonstrate that students not only acquired theoretical

knowledge but were also able to apply it to practical problems.

Chart 8 - Frequency of assessment methods for theoretical knowledge

While grasping theoretical concepts is always important, acquiring practical skills in analyzed courses

was an imperative as 19 out of 21 courses had a formal assessment of practical skills. These

assessments included assessing student’s efforts on laboratory exercises during semester, evaluating

practical assignments (tasks, projects) done at home during the semester, and performing practical

parts of exam.

0%

5%

10%

15%

20%

25%

30%

35%

40%

Written exam Oral exam Both No evaluation

23

Chart 9 - Type of knowledge assessed in analyzed courses

1.3.2.4. Tools

While used technologies vary across analyzed courses, it is not surprising that mainstream object-

oriented languages dominate. For example, Java is used in 9 courses, C++ is used in 6 courses, and C#

is used in 3 courses. Other mainstream languages include Python, Kotlin and Swift, each of them being

used in only 1 course. An interesting technology (albeit used in only 1 introductory course) is RAPTOR

- a flowchart-based programming environment which allows visual programming. Such technology can

be used to demonstrate object-oriented concepts and mechanisms in a visual and less abstract way.

While most courses were mandating one “official” programming language to be used throughout the

course, three courses were more liberal, and allowed students to choose their own preferred

programming language and environment.

Chart 10 - Programming language occurence in analyzed courses

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Theoretical knowledge Practical knowledge

0

1

2

3

4

5

6

7

8

9

10

Java C++ C# Flowchart Python Kotlin Swift

24

Popularity of integrated development environments (IDE) heavily depend on what programming

language is used. Courses favoring Java programming language have most diverse IDE offering, and

suggest using NetBeans (4 courses), IntelliJ IDEA (3 courses), Eclipse (2 courses) and BlueJ (2 courses).

As we can see, most courses went with mainstream IDEs that are used for real-life Java development.

However, from our perspective, a notable mention is also BlueJ IDE due to its support for teaching and

learning OOP. Microsoft Visual Studio was a first choice in courses using C++ (4 courses) and C#

programming languages (3 courses). This made Visual Studio the most represented IDE in total, and

also the only IDE used for more than one language. In addition to Visual Studio, C++ development is

also done in Dev-C++ (generally recommended for beginner programmers) and Verifikator (proprietary

IDE developed by teachers to enforce good coding practices). Other popular IDEs such as PyCharm

(Python), Android Studio (Kotlin) and Xcode (Swift) appeared each only in 1 course. Finally, the 3

courses which allowed students to choose programming language on their own, allowed students to

also choose their preferred IDE.

Table 16 - Suggested or mandated IDEs per programming language

Language IDE 1 IDE 2 IDE 3 IDE 4

Java Netbeans (4) IntelliJ IDEA (3) Eclipse (2) BlueJ (2)

C++ Visual Studio (4) Dev-C++ (1) Verifikator (1) -

C# Visual Studio (3) - - -

Python PyCharm (1) - - -

Kotlin Android Studio

(1)

- - -

Swift Xcode (1) - - -

Flowchart RAPTOR (1) - - -

25

Chart 11 - Most frequently used IDEs in analyzed courses

1.3.3. Conclusion

While approaches for teaching OOP varied in analyzed courses, there are still some general trends that

can be noticed across most of the courses. In terms of transferring theoretical knowledge, analyzed

courses favor traditional lectures coupled with practical examples and two-way teacher-student

interaction. Transferring practical knowledge is considered essential in all courses and is carried out as

a combination of laboratory exercises and individual programming projects students do at home. Most

courses have formal evaluation of theoretical knowledge either through written exam, oral exam, or

both (most frequent case). Evaluation of practical knowledge is considered even more important in

analyzed courses. Students demonstrate practical knowledge by working continuously on laboratory

exercises, by submitting tasks and projects during the semester, or by taking practical tests at the end

of semester.

Finally, in analyzed courses we can identify a number of different technologies, programming

languages and environments. Most courses use mainstream OOP languages (Java, C#, C++) and their

respective IDEs (Netbeans, IntelliJ IDEA, Eclipse, Visual Studio), which ensures students are acquainted

with tools they are likely to use in real-life software development. Some courses however take a more

lightweight approach and favor tools that are more suitable for teaching and learning OOP (RAPTOR,

BlueJ, Verifikator).

0

1

2

3

4

5

6

7

8

26

2. Horizontal analysis of high schools’ data

In order to make successful and usable gap identification in teaching of object oriented

programming between high schools and universities, the next step was to make a horizontal analysis

of high schools' data. It was done in a similar way as horizontal analysis of universities' data. The

methodology used to collect and analyze data was the same, with some minor changes in scope of

analyzed data. It was consisting of these steps:

1. All partners (from high schools) were analyzing their curricula of the subjects that are related

to teaching object oriented programming and for every subject these data were collected:

a. Subject name

b. Type of subject (compulsory or optional)

c. Grade/class (in which subject is taught)

d. Hours of teaching OOP

e. Learning outcomes

f. Topics

g. Description of teaching methods

h. Type of activities (investigation, discussion, practical work, production, data

aquisition, …)

i. Assessment

j. Teamwork experience

k. Literature

l. Suggestions on what (and how) should be improved in curriculum and/or in teaching

OOP in schools

m. Additional comments

n. Additional subjects related to programming in general

2. All partners were making a review of data. Each high school partner performed a review of

data from all other high school partners and each university partner made a review of a data

from a high school in the same country. In this way, the consistency of the data was ensured,

as well as the equalization of the way in which the data were collected. After the review

phase was over, all the partners analyzed the comments and made necessary changes in data

collections.

3. The analysis of data is performed. It was divided into five areas:

a. Analysis of OOP load. It was focused on type of schools, type of subjects, subject

names, grades/classes and hours of teaching OOP.

b. Analysis of learning outcomes and topics

c. Analysis of teaching methods, types of activities, assessments and team work

experiences

d. Analysis of literature and teaching materials

e. Analysis of suggestions on how to improve OOP teaching in schools, additional

comments from partners together with review of additional subjects related to

programming in general (not object oriented programming)

27

2.1. Analysis of OOP load

There were three types of schools involved in this analysis (schools that are partners in this project):

1. schools that provide general education (gymnasiums),

2. schools that provide vocational education (different types of vocational

programmes),

3. schools with both general and vocational education (gymnasium and vocational

programmes).

Each partner in the project was obligated to review their own curricula and identify all the subjects in

which OOP is present. That means that all the subjects where OOP is taught even on marginal level

were taken into consideration. After the partners finished the data gathering process, a total of eight

subjects were identified as subjects with OOP content. Number of relevant subjects per school can be

observed in Chart 12.

Chart 12 - High schools and numbers of OOP related subjects

As shown in the chart, all the schools have only one or two OOP related subjects. During analysis, no

big difference was observed in the number of subjects related to OOP between general and vocational

schools. However, there is a very big difference in number of subjects in which programming content

in general (without OOP) is taught but that will be mentioned in more details later.

Regarding grades (or classes) in which OOP is taught, it wasn't possible to make accurate analysis and

correlation because of differences in educational systems in different countries (differences in number

of years and grades which are considered as primary and secondary education). However, it is obvious

that none of the school is performing OOP teaching in lower grades. In 100% of cases, it is performed

in higher grades which means 3rd or 4th year of secondary education (which can be compared to 11th

or 12th grade for schools, for example, in Germany). This can be interpreted in a way that students still

need to gain some knowledge in other programming areas (basics concepts of programming,

0

1

2

3

High School
Ivanec

Gymnasium
Dresden-Plauen

Gymnasium
Pardubice

Obchodná
akadémia
Považská
Bystrica

Gimnazija
Ivanjica

N
u

m
b

er
 o

f
su

b
je

ct
s

School

Number of subjects in which OOP is taught

28

algorithms, data types, problem solving etc.) before they can successfully adopt the concepts of OOP.

Data regarding institutions, subject names and types, number of hours and grades can be observed in

Table 17.

Table 17 - Basic data of OOP related subjects

High school Subject name Grade
Type of

subject

Number of

hours (teaching

OOP)

High School Ivanec
Mobile application

development
4 Optional 15

Gymnasium

Dresden-Plauen

Practical computer science -

Advanced programming
11 or 12

Compulsory

and optional
14

Data structure and

modularization
11 or 12 Compulsory 10

Gymnasium

Pardubice

Seminare of programming 1 3 Optional 60

Seminare of programming 2 4 Optional 45

Obchodná akadémia

Považská Bystrica

Applied Informatics -

Seminar
3 Compulsory 10

Applied Informatics -

Seminar
4 Compulsory 46

Gimnazija Ivanjica
Object oriented

programming
3 Compulsory 148

As we can see, object oriented programming is taught in high schools in both compulsory and optional

subjects. Although there aren't any big differences noted in learning outcomes or teaching methods

between those two types of subjects, there is a difference for students which are later enrolled in OOP

courses in universities. Compulsory subject means that it is obligatory to all students, which leads to

conclusion that all high school students gain same knowledge and skills. On the other hand, optional

subjects are chosen only by students who really want to attend those classes, by their own choice.

After they finish their high school education (for example, in one vocational program), not all the

students have the same OOP knowledge if the OOP subject was implemented in school as optional

subject. The number of subjects divided into compulsory and optional categories is shown in Chart 13.

29

0

20

40

60

80

100

120

140

160

Mobile
application

development

Practical
computer science

- Advanced
programming

Data structure
and

modularization

Seminare of
programming 1

Seminare of
programming 2

Applied
Informatics -

Seminar

Applied
Informatics -

Seminar

Object oriented
programming

High School
Ivanec

Gymnasium
Dresden-Plauen

Gymnasium
Dresden-Plauen

Gymnasium
Pardubice

Gymnasium
Pardubice

Obchodná
akadémia

Považská Bystrica

Obchodná
akadémia

Považská Bystrica

Gimnazija Ivanjica

N
u

m
b

er
 o

f
h

o
u

rs

Subject name / high school

Number of hours per subject/high school

Chart 13 - Categorization of subjects and their number per category

As mentioned earlier, a total of eight subjects were taken into consideration for this analysis and their

distribution by category looks like this: there are four compulsory subjects, three optional subjects and

there is one subject which can be categorized as both compulsory and optional because it is one of

four optional topics in the curriculum. Teachers can decide not to implement OOP in their lessons.

When it comes to the number of hours in which OOP is taught, there are big differences between

schools. In some schools it is represented with just over 10 hours per subject while in other schools

there are subjects fully dedicated to object oriented programming with large number of hours. Those

differences can be observed in Chart 14.

Chart 14 - Distribution of hours per subject dedicated to OOP contents

0

1

2

3

4

Compulsory Optional Compulsory and optional

N
u

m
b

er
 o

f
su

b
je

ct
s

Category

Subject categories and their number per
category for analyzed schools

30

In some schools, object oriented programming is taught as a whole subject with full number of hours

dedicated to OOP content, while in most schools OOP is taught just as partial topic in one or two

subjects. For example, in Gimnazija Ivanjica (Serbia), OOP is taught in total of 148 hours in one subject

fully dedicated to OOP. At the same time, in High school Ivanec (Croatia), OOP is taught only 15 hours,

in one subject named Mobile application development, simply because OOP topics are needed for

other subject contents. In other countries, subjects that contain OOP topics are Seminare of

programming 1 and 2 (Gymnasium Pardubice), Applied Informatics – Seminars (Obchodná akadémia

Považská Bystrica) and in Gymnasium Dresden-Plauen OOP is taught through subjects named Practical

computer science - Advanced programming and Data structure and modularization.

With such big differences in curricula among different schools, it is quite clear that students cannot get

same level of knowledge and unified skills in different countries in area of object oriented

programming. This also results in different prior knowledge of the students which are needed to

continue their education at the universities.

2.2. Analysis of teaching methods, types of activities, assessments and team work

experience

2.2.1. Teaching methods

The next area that was analyzed for participating schools is teaching methods involved in educational

process. Data which were gathered regarding teaching methods are types of teaching methods and

explanations of how those methods were implemented with some simple examples.

Analysis shows that couple of teaching methods are used in most (if not all) of OOP subjects in high

schools. Those methods are:

• explanation,

• programming/practical work,

• problem solving and

• questions and answers.

It is evident that in all subjects the common way of teaching is that teacher first explains new content

and then students are performing practical work under teacher's supervision or on their own. Teacher

explains basic concepts of given topics using presentations and demonstrations (for theoretical

background of given topic) and then he uses different examples related to the topics for better

explanation. For example, teacher shows how to write a code in given programming language or

explains basic terms related to OOP (class, subclass, superclass, object) using visual elements and

simple examples. That way students can notice differences visually for better understanding.

Programming (including practical work) is another common method used in teaching process. This

method implies that contents and topics, that are explained by teacher, should be given a practical

component. Concepts (that are explained theoretically) are implemented in programming language.

Teacher shows how to write a code in programming language and students are following the

instructions. After that, students are working on codes on their own in similar way, under supervision

from a teacher (for example, teacher explains how to define a class, how to define attributes and

31

access modifiers for some attributes and students are doing the same for more attributes, they check

how changing of access modifiers affects program execution etc.). Students are working on similar

problems that were explained by the teacher, but analysis also shows that in some subjects, students

are working on more complex problems, such as developing a working software product, for example,

simple information system for business trip management or creating a visual (graphical) application.

These kind of programming is mostly present in subjects with significant number of hours related to

OOP.

Besides explanation and programming, problem solving is another method greatly used in OOP

subjects in high schools. It means that students are given a specific problem which they have to solve

by applying learned content and using gained practical programming skills. The difficulty of the

problem (assignment) also depends on the number of practical hours that the students have achieved

during classes, which is again directly related to the total number of hours of OOP in a particular

subject. That means that students enrolled in OOP subject with larger number of hours are better

prepared to solve more complex problems while the students enrolled in subjects where OOP is less

represented have a lower ability to solve complex problems.

Another method greatly presented in teaching is a method of questions and answers. Analysis shows

that students are free to ask questions if some concepts are not fully clear and then entire group starts

a discussion about it, until concepts are explained. The questions are related to the given example and

topic, for example, what is inheritance, what types of polymorphism are known in OOP, how can

objects communicate with each other, etc.). That way a group discussion is forming which produces a

peer learning, one of the most popular approaches in educational practice. Student that asked a

question benefit from this approach, but also other students who are explaining and giving answers,

because students think about the problem and give their own thoughts and suggestions.

All the mentioned methods and how often are they used in the subjects can be seen in Chart 15.

Chart 15 - Representation of teaching methods used in high school subjects

As shown in chart and mentioned in text earlier, explanation, programming/practical work, problem

solving and questions and answers are the most common methods used in high school subjects. But,

100% 100% 100%

88%

25% 25%

13%

25%

13%

frequency

Teaching methods and their usage

explanation

programming/practical work

problem solving

Q&A

fulling gaps in more complex programs

finding mistakes or better solutions

pair programming

working on given assignments

cooperative learning

32

besides these methods, it is evident that some other methods are also used, although in less amount

of subjects.

For example, fulling gaps in more complex programs and finding mistakes or finding better solutions

are used in 25% of subjects. That consists of giving students more complex structures and they have

to add missing parts as well as optimization of program solutions and debugging (finding and correcting

mistakes).

It was mentioned earlier that programming is one of the most common methods used for teaching

OOP. In addition, in one of the analyzed subjects, students are doing pair programming, which means

that two students (developers) work together on one station to design, code and test solutions. We

can also see in Chart 4. that working on given assignments is represented in 25% of subjects. It implies

that students work either on a small task for a short time, such as programming a calculator that can

work with fractions, or on a more complex task over a longer period such as programming an

information system for business trip management.

One final teaching method that is mentioned in this analysis is cooperative learning where students

work together in small groups on a structured activity which, among other benefits, increases

individual responsibility in each team member. This method is present only in one of analyzed subjects.

It is obvious that fair amount of teaching methods is used in teaching OOP in high school subjects.

Some of these methods are very common in almost all schools, such as explanation, programming,

problem solving and questions and answers. It is also evident that some schools and subjects use

methods that are not common for majority of OOP subjects, but that depends on the fact whether

OOP is the main content in a subject or it is taught as one of the topics in the subject just because it is

needed for successful understanding other topics in that subject. This is also strictly related to the

number of hours which are dedicated to OOP contents and that also directly dictates the depth to

which one can go in terms of teaching new contents.

2.2.2. Types of activities

Similar to the teaching methods, activities for students and their variety in high school subjects were

also analyzed. Students' activities are closely related to teaching methods and intertwine with each

other. In high school subjects that were analyzed, there are two activities which dominate in

educational process:

• discussion and

• practical work

In most of the analyzed subjects, discussion is stated as one of the most used activities for students.

Students and teacher are constantly engaged in conversation to make sure that students fully

understand the concepts. Students are also making discussion between themselves when they have

to complete some tasks (for example, what attributes to include in some class, how to define methods

etc.). Discussion can be done between students who are divided in groups or between students and

teacher.

In one of the analyzed subjects, it is stated that during the lesson of theory, the teacher presents the

topic through a presentation and shows and explains an example on the computer. Mostly these are

33

real-life examples, for easier understanding. During this time, students try that example on their

computers.

While having practical classes, students first work with the teacher on computer examples, and then

in pairs or small groups, they solve certain tasks assigned to them by the teacher. Students discuss,

exchange ideas with each other and with the teacher, looking for the simplest possible solution. After

that, they independently solve similar examples based on what they have learned so far, and they are

also given tasks for more complex problems and their task is to find solutions on the Internet and

understand those solutions.

This is one example of how to put a student in a center of educational process, but this kind of activity

is not present in majority of the OOP related subjects. Again, same as with teaching methods, it is

related to number of hours and depth to which certain contents are taught. It is obvious that in subjects

where OOP is taught for fewer hours, there is not enough time for this type of activity.

Practical work, as the activity for students, is involved in all subjects. It consists of programming and

problem solving when students have to make their own program solutions. Students, independently

or in groups, repeat programming steps to solve problems and even to create more complex programs.

Depending on complexity of given task, students are working either in pairs or individually. It is also

noted that students start with more simple problems and create their own solutions step by step,

which results in solving more complex problems. One of the example mentioned in analysis is the

following one: The students start with projects composed of one class (for example, Date, Person,

Animal) and try to implement them from basics. This part focuses on basic and medium

algorithmization and on basic concepts of OOP. Later, they work with projects containing at most three

or four classes and try to create simple programs, such as calculator, information system or text game.

This part focuses on explanation of advanced concepts of OOP.

Very similar to the teaching methods, in classes, a lot of attention is paid to the practical work with the

students. In this way, students acquire the necessary knowledge and skills to solve simple problems

from everyday life using concepts of OOP. The range and complexity of the problems are related to

the amount of OOP hours and ranges from solving the simplest problems in schools with a smaller

number of OOP hours to more complex problems in schools where entire subjects are dedicated to

OOP.

2.2.3. Assessments

The assessment of adoption of educational outcomes and acquired skills is also one of the very

important activities in the educational process. It relies on the defined outcomes and contents that

were taught in class, but also, the type of tasks that are evaluated must be in accordance with the tasks

and practical problems that the students encountered during the classes.

The data collected by the analysis is quite superficial for some subjects, but it is obvious that the

practical type of task appears in the assessments of all subjects. In about 40% of subjects, assessment

consists of both theoretical and practical exam. Theoretical part is related to theoretical concepts

where students have to prove they have learned the concepts of OOP.

There are differences in subjects of how practical skills are assessed. In 50% of subjects, students have

to create independent software product. It is stated that students get marks for their work and it

34

38%

62%

Teamwork experience in high school
subjects

Yes

No

consists of following criteria: exactness, completion and complexity of the student's solution. In some

subjects, students also have to present their work.

In two of the analyzed subjects, as part of practical assignment, students must add several simple

functionalities into existing project, but also demonstrate the skills of errors understanding and their

correction. Students also work on projects. Within the course, it is necessary for students to work on

the assigned (or selected) software project and then to defend the resulting software project in a

suitable way.

In one subject that is fully dedicated to OOP (from Gimnazija Ivanjica, Serbia, with a total of 148 hours),

the evaluation of the achievement of educational goals is done through monitoring students' activities

in class and their progress during the school year. It consists of initial tests, assessing practical work on

computers, dialogues with students, discussion in class, oral exams, students' participation during

lessons, homeworks, presentations, development of projects tasks etc. The areas that are covered by

assessment are: Historical development of object oriented paradigm, basic concepts of OOP,

relationships between classes and polymorphism, creating a project task. For each area, there are

three levels of achievement defined: basic, intermediate and advanced level and for each level there

are outcomes and skills defined.

Considering the fact that this is the subject with the largest number of hours compared to the other

analyzed subjects and because that is strictly OOP subjects (all the topics and contents in this subject

are primary related to OOP), this cannot be taken as representative sample for all the subjects. All the

outcomes that students achieve as well as skills they gain in these particular subjects will be analyzed

in more details in vertical analysis between high schools and universities in the same countries. Of

course, this type of analysis. Of course, such an analysis will also be conducted for all other schools and

universities in the partner countries of the project.

2.2.4. Teamwork experience

From the aspect of education related to OOP, students' teamwork is a weak point in high schools,

which can be observed in Chart 16.

Chart 16 - The presence of students' teamwork in high school OOP subjects

35

In only 38% of subjects where OOP is taught, teamwork is present and students gain teamwork

experience during lessons. In majority of subjects, students don't work in teams, they only sometimes

collaborate when they work in pairs and have to solve a certain problem, but it is without any assigned

roles.

For the subjects where teamwork is present, students work on different project tasks which are

included in curriculum of computer science and partner work is common for programming tasks. In

another subject, students are not separated into groups but everyone is involved in group. There are

maximum of 10 students in the exercises and they work as a team. Students are more active and

involved, express their opinions, cooperate with each other, solve set tasks together etc.

2.3. Analysis of literature and teaching materials

In terms of materials and literature that are used for teaching, teachers use materials intended for

teaching object-oriented programming but also their own materials which they create specifically for

their own classes. Different types of handbooks, textbooks, digital materials are used, but there also

big differences in amount of literature that is used for different subjects. In Croatia, situation is as

follows:

Table 18 - Literature and other materials used in OOP subjects

Subject name
School,

country
Used materials and literature

Additional

comment

Mobile

application

development

High school

Ivanec,

Croatia

1. STAPIĆ, Z., ŠVOGOR, I., FODREK, D.: Mobile

application development, handbook for the 4th

grade of high school, Varaždin, 2016, ISBN: 978-953-

6071-54-8

2. VOLARIĆ, T., TOIĆ DLAČIĆ, K., IVOŠEVIĆ, I.,

DRAGANJAC, M.: Think IT, computer science

textbook for the 4th grade of high school, Alfa d.d.,

Zagreb, 2021, ID: HR-ALFA-INF4-3489

Teachers can

choose one of

the textbook

from catalogue

but also create

their own

materials. Not

obligated to use

textbooks.

2.4. Analysis of suggestions on how to improve OOP teaching in schools

When analyzing their curricula of the subjects related to OOP, all the partners put their own

suggestions on what can be improved in OOP teaching and how to do it. There are many suggestions

that could be considered and it's very clear that they depend on differences in educational systems

among countries. There is also a fact that this analysis covers different curricula (different subjects) in

which OOP is taught, which means that maybe a suggestion for improvement by one partner is already

36

adopted in curricula and classes for another partner. A list of problems and possible suggestions and

solutions in Croatia are shown in Table 19.

Table 19 - Problems that teachers are facing with and suggestions for improvement the quality of classes

Country Problems and suggestions for improvement

Croatia

• More practical tasks which will include students cooperating and working

together (teamwork)

• More materials with practical tasks and exercises to support teacher's lessons

• More hours dedicated to OOP in compulsory subjects in high schools

• In primary schools, informatics and computer science in general should be

obligatory for all pupils, so they all enroll high schools with same skills and

knowledge

It is evident that teachers are facing with different kind of problems and obstacles in their classes, but

in general, all the problems are generated around two important areas: lack of literature and reduced

amounts of teaching hours related to OOP. Regarding literature, teachers try to overcome this obstacle

in different ways, from creating their own materials to searching different sources (textbooks,

magazines, digital platforms) for more examples which can be used with students. Regarding the

problem of small number of hours in which OOP is covered, it is mainly prescribed by the curricula of

the teaching subjects, and teachers themselves can partially influence it.

2.5. Additional comments

Due to pedagogical standards in Croatia, which prescribe minimum number of students that are

necessary to be enrolled in subject (minimum of 10 students) and number of students which is

continuously decreasing at national level, it is very hard to gather a big enough group so the school is

allowed to conduct compulsory subject.

2.6. Review of additional subjects related to programming in general

The subjects that were analyzed earlier are very much related to OOP, so they were the main focus for

analysis. Besides those subjects, there are several more subjects from IT field in every school that are

not related to OOP, but some of the topics that are taught in those subjects are prerequisite for

successful adoption of OOP contents. The brief description of contents of those subjects are shown in

Table 20.

Table 20 - Other IT subjects taught in partner institutions

School Subject name Grade Topics

High school

Ivanec

Informatics 1 -

obligatory

subject

1st grade programming languages, algorithm, pseudocode,

variables, data types, input/output operations,

relation, arithmetic and logic expressions, basic

algorithmic structures (sequence, selection, iteration),

37

analysis of the algorithm, correctness of the algorithm,

error correction, simple problem solving

(mathematical problems), implement solutions in

Python

Informatics 2 -

optional

subject

2nd grade one-dimensional data structures (string, array), nested

loops, data indexing, more complex problem solving,

implement solutions in Python

Informatics 3 -

optional

subject

3rd grade using concepts from Informatics 1 and Informatics 2 to

solve more complex problems, sorting algorithms,

search algorithms, recursion, user defined functions,

work with text files, using graphical modules to

visualize simple problems, implement solutions in

Python

All the subjects mentioned in the Table 20 are related to IT and they are covering big variety of topics.

Some of the listed contents are important for starting to learn programming and are more or less

related to the contents of OOP.

